/ EN
13922884048

技术交流

Technology Exchange
/
/

ADC参数及ENOB测试

发布时间:2022-05-19作者来源:印宁华浏览:7429


随着数字技术的不断发展和计算机在信号处理、控制等领域中的⼴泛应⽤,过去由模拟电路实现的⼯作,今天越来越多地由数字电路或计算机来处理。作为模拟与数字之间的桥梁,模拟数字转换器(ADC)的重要性越来越突出,由此也推动了ADC测试技术的发展。

本文先介绍了ADC的测试,包括静态参数和动态参数测试,然后结合⾃动测试系统测试实例,详细介绍了 ADC芯片参数的测试过程。


测试原理

1. 1 静态参数的测试原理

ADC的静态参数是指在低速或者直流流入ADC芯片测得的各种性能参数。静态参数测试方法有逐点测试法等,其主要测试过程如图1所示。

1.png

(1)零点误差的测量

零点误差又称输入失调,是实际模数转换曲线中数字0的代码中点与理想模数转换曲线中数字0的代码中点的[敏感词]误差,记为EZ。其测试方法如下:输入电压逐渐增大,当图1中的数字显示装置从00..00变为00..01,记下此时输入电压Vin1 , 然后逐渐减小输入电压, 使数字显示装置由00..01变为00..00,记下输入电压Vin2 :
  

2.jpg

  式中:N 为A /D的位数; VFSR 为A /D输入电压的满量程值,LSB为ADC的[敏感词]有效位。

  

3.jpg


(2) 增益误差EG 测量

增益误差是指转换特性曲线的实际斜率与理想斜率之间的偏差。测试方法如下:把零点误差调整为0,输入电压从满量程开始变化,使数字输出由11..11 变11..10,记为Vin1。反方向逐渐变化Vin , 使输出端由11..10变为11..11,记下输入电压Vin2 。则:

  

4.jpg

(3) 线性误差的测量

线性误差指实际转换曲线与理想特性曲线间的[敏感词]偏差。实际测量是测试第j码的代码中心值,将其与理想第j码的中心值比较, 测试方法如下:①调节输入电压,使数字输出端由第j码变为第j - 1码,记为Vin1 ; ②调节输入电压,使数字输出端由第j - 1码变为第j码,记为Vin2 ; ③调节输入电压,使数字输出端由第j码变为第j +1码,记为Vin3 ; ④调节输入电压, 使数字输出端由第j + 1码变为第j码,记为Vin4 ; ⑤求出第j码的偏差ΔVj 为:

  

5.jpg


式中:Vj为理想状态时ADC第j码的标称量化值; ⑥重复以上步骤,测得所有数码的偏差,取其[敏感词]Δ︱Vj ︱的[敏感词]值即为线性误差。

(4)微分线性误差的测量

微分线性误差是实际转换特性曲线的码宽与理想码宽之间的[敏感词]偏差。实际上,对线性误差的测量和微分线性误差的测量是同时进行的,找出被测点N 对应的模拟电压实测值,再找出对应于N + 1的模拟电压实测值,两者之差即为实际转换曲线在该点的码宽。从第j个数字值变为第j + 1码的数字值,实际对应的模拟Vin1 输入值之差,这个差值与理想的步长1 LSB的差,然后取其[敏感词]值,就是微分线性误差。即测得第j码的实际码宽Δj:

  

6.jpg

将Δj与1 LSB相比,取其偏差的[敏感词][敏感词]就是所要测的微分线性误差。


1. 2 动态参数的测试原理

ADC的动态性能包括很多,如信噪比( SNR) 、信号与噪声失真之比( SINAD) 、总谐波失真( THD) 、无杂散动态范围( SFDR) 、双音互调失真( TTIMD)等。动态参数的测试方法有动态信号叠加测试法、谱分析FFT法和直方图法等。

(1)动态信号叠加测试法[ 526 ]

它的基本思想是在被测A /D 转换器模拟输入的参考电压上叠加一个小的交流信号,使A /D转换器输出的数字量短时间内在指定码周围以一定频率来回变化,从而测试出相应的跃变点和代码中心值,并可确定出零点误差、增益误差、相对精度和微分线性误差。这种方法简单易行,但是受到分辨率和速度的限制。

(2)谱分析FFT法

将满量程正弦信号送到被检的ADC中,转换后的结果存放在存储器中,然后对输出数据实施FFT运算,从而计算出SNR、THD等参数。输入由2个不同频率的正弦波组成,实施FFT运算后可以计算出IMD。在测试高精度ADC时,要求FFT的长度足够, 测试频率的选择是FFT法应用的一个关键问题。另外, FFT法要求采样频率不能是信号频率的整数倍。FFT法是ADC动态测试中很常用的方法,其优点是直观、简便,几乎所有ADC的失真都可在其输出频谱上表现出来。但是这种方法不能避免频谱泄露和ADC以外的误差源对测试带来的影响。

(3)码密度直方图法

这种方法是将一个正弦波送到被测A /D转换器中,由计算机记录下A /D转换器采样点的数量,然后计算机通过软件进行运算和处理,绘出直方图,从而定量地表示出微分线性误差、失码和增益误差等参数。

  

测试系统组成

下面将介绍如何在BC3192V50 测试系统上实施ADC的测试。该系统是由北京自动测试技术研究所开发研制的VXI总线型数模混合集成电路测试系统,系统[敏感词]测试速率为50 MHz,提供16 bit分辨率、100 KHz转换/采样率,可由数字系统同步触发的波形产生器、波形分析器及高速DSP处理器,具有较强的模拟信号测试及混合信号测试。

2. 1 测试系统硬件结构

(1)第1层:称为“母机”,提供测试各类IC所需要的最基本、最通用的硬件资源。它包括:①电源; ②精密测量单元( PMU)及可程控继电器矩阵; ③精密电压表;④数字电路部分。

(2)第2层:适配器层,它是在母机大平台的基础上为某类器件的测试提供的匹配层,为某类IC的测试提供的专用测试电路。

(3)第3层:个性卡层,是为测试某类之中的具体的某个IC而设计的小板。其中适配器是针对具体芯片而开发的测试电路,是开发各种芯片测试的关键。

2. 2 测试系统的软件
包括各仪器模块的驱动程序、软面板、调试程序、用户测试程序开发环境和测试程序库等。


测试系统环境配置

3. 1 单调漏码扫描测试

2. 1节已经讲了静态参数的测试原理,很容易就能在本测试系统实现。下面以快速单调漏码扫描测试为例,介绍测试适配器的配置。快速漏码扫描电路如图2 所示。在图的左侧,积分电路用以产生单调直线上升或下降的电压,电压的上升或下降幅度大于被测DUT的模拟输入电压范围;图右侧是由DUT输出的数字量和计算器构成的数字比较电路。在扫描之前,计算机通过数据总线将计数器预置成DUT的模拟输入电压的[敏感词]值时,所对应的数字量,此处设为数字0。此时开关S1断开, S2闭合,使DUT的模拟输入值从0开始。积分电路的输入电压是由DAC产生的,它由程序设定以便控制积分电路的电压上升速率,使之和被测器件的转换时间相匹配。其电压上升速率一般为:积分电路的输出电压增加时,被测器件ADC的输出从数值D →D + 1 所需要的时间, 约等于10 倍的被测器件ADC的转换时间。当扫描开始后,开关S1 闭合, S2 断开,使积分电路呈线性扫描状态。被测器件被周期地触发,使之对输入的信号进行A /D转换。其输出与计数器相比较,若相等,则由数字比较电路产生一个脉冲,使计数器自动“加1”。而在扫描过程中,计算机通过数据总线不断地读取计数器的数值,并做出判断:若在规定的时间内,计数器应“加1”,而未“加1”,则判定DUT在此处有漏码。其漏码的位置只要读出计数器的当前值就可以了,若在规定时间内,计数器被正常地“加1”,且计数器的计数值达到被测器件DUT输出的[敏感词]值,则DUT无漏码。


7.png


3. 2 测试动态参数的码密度直方图法和谱分析FFT法测试环境配置

基于测试主机提供了强大的DSP数字信号处理能力,这个机台还可以使用码密度直方图法和谱分析FFT法测试动态参数。其测试原理如图3 所示,主机高精度信号源产生一个正弦波或三角波,输入被测ADC,在FFT法测试中,ADC输出数码被接收器接收后,地址产生器顺序产生地址,把锁存器锁存的数据写入存储器,然后传送到主机,用分析软件分析,并给出测试结果。在直方图


  

8.png


实测结果

应用BC3192V50测试系统对ADC进行了实际测试,图4为对一12位的逐次逼近型ADC直方图的测试结果,其中图4 (a)为积分非线性的结果,图4 (b)为微分非线性的结果。积分非线性和微分非线性的测试结果都控制在0. 5 LSB之下。


9.png


小结

结合ADC的静态和动态测试原理,给出了基于测试系统的ADC静态参数和动态参数测试的一般过程,并对此过程测试环境进行了较为详细的分析。从而用国产的自动测试系统实现了ADC的低成本、高可靠性的计算机辅助测试。


高精度高速ADC有效位ENOB的测量
 作为连接模拟世界和数字世界的桥梁,ADC的性能影响整个系统的性能。如何对ADC进行性能测试是目前ADC研究的热门领域之一。表征ADC的性能参数分为静态性能参数和动态性能参数。静态性能参数描述ADC的内在特性,主要关注稳定模拟输入与对应数字输出的关系;动态性能参数描述的是ADC采样和重现时序变化信号的能力。用于定量表示ADC动态性能的常用参数有6个,分别是:SINAD(信纳比)、ENOB(有效位数)、SNR(信噪比)、THD(总谐波失真)、THD+N(总谐波失真加噪声)和SFDR(无杂散动态范围)等。在这些动态性能参数中,ENOB是表征ADC的动态性能的重要参数,ADC自身及外部电路产生的噪声和谐波等都可以在该参数中得到反映。

测试ADC性能参数的方法主要有模拟方法和数字方法两种。模拟方法是将ADC得到的采样数据经DAC转换为模拟信号,再使用传统的方法进行测试,该方法引入了DAC的噪声和谐波,因此会影响ADC性能指标;数字方法主要有直方图法、正弦波拟合法和FFT法等,直方图法测试ADC的等效输入噪声等性能参数,正弦波拟合法对ADC的动态性能给出总体描述,FFT方法测试ADC动态性能参数。直方图法和正弦波拟合法引入了信号源的噪声和谐波等外围电路干扰,并且测试的性能参数单一,相比之下,FFT方法可以抑制甚至消除外围电路影响,获得的动态性能参数也较多。重点讨论如何采用FFT方法对ADC的ENOB进行测试。

10.png



12.png


可以看到,相干采样对信号源的频率分辨率和稳定性要求很高。在实际操作时,信号源无法满足条件,需要对采样数据进行加窗函数处理以减少频谱泄漏。
加窗函数时,窗函数的选择非常重要。理想的窗函数是主瓣宽度尽量小、过渡带尽量陡,以使频点能量更加集中。应用较多的窗函数有矩形窗、汉宁窗、哈明窗、布莱克曼窗等。图1给出了相干采样图形和非相干采样图形加窗函数后的功率谱密度。对于相干采样,能量都集中在一个频率点上,平均噪底低;对于非相干采样,出现了频谱泄漏现象,平均噪底被抬高,经过加窗函数处理后,其平均噪底被压低,能量分布得到集中,但是能量依然不如相干采样集中。在测试ADC动态性能参数时,选择一个合适的窗函数很难,不同的窗函数导致测试结果也不一样。


13.png

3 使用FFT测试ADS5400
在对ADC的ENOB进行测试时,会引入一定量的噪声和谐波,主要分为两类,一类是ADC自身的噪声和谐波,这是ADC的固有特性;另一类是外围电路引入的噪声和谐波,这些外围设备包括信号源、时钟源等。测试其动态性能参数时,需要抑制或消除外围电路引入的噪声和谐波。本文采用了参考文献[8]提到的ENOB测试方法,利用式(1)得到ADC的ENOB。该方法可以有效抑制信号源的干扰,实现了对ADC的ENOB的客观测量[8-9]。

14.png


采用上述步骤对TI公司的ADS5400进行测量,测量平台如图2所示。ADS5400是一款高速高分辨率ADC,采样率范围100 MS/s~1 000 MS/s,分辨率为12 bit。

15.png

最终测得,在输入信号频率为1.123 MHz、输入幅度满量程时,ADS5400的SINAD=56.66 dB,有效位ENOB=9.12 bit(fin=1.123 MHz)。对比ADS5400的Datasheet给出的ENOB典型值ENOB=9.34 bit(fin=125 MHz)可以发现,改进的FFT方法很好地抑制了信号源以及其他外围电路的干扰,基本实现了对ADC的ENOB的准确测量。
对ADC动态性能参数进行测试时,要注意抑制或消除ADC自身及外围电路的噪声和谐波引入的干扰。


此种改进的FFT方法用于高速高分辨率ADC的动态性能参数测试,注意到FFT分析采样数据时的频谱泄漏问题,给出了相干采样和加窗函数等解决方案。采用改进的FFT方法对TI公司的ADS5400进行测试,在采样率为400 MS/s的情况下,获得了ADS5400的ENOB=9.12 bit(fin=1.123 MHz)。同时,验证了使用FFT方法测量高速高分辨率ADC的有效位的可行性,该方法可以广泛应用在ADC的动态性能参数测试中。


(本文采摘自网络,意见与观点不代表本站立场。如有侵权,请联系我们删除!)

服务热线

0755-83044319

霍尔元件咨询

肖特基二极管咨询

TVS/ESD咨询

获取产品资料

客服微信

微信服务号