/ EN
13922884048

技术交流

Technology Exchange
/
/

最强的芯片产业链科普,芯片自主可控深度解析(一)

发布时间:2022-03-18作者来源:萨科微浏览:2253

如果有人跟你说:“嗨,我做的芯片实现了100%自主可控!”等等,你先不急着崇拜(相信)他,请看完此文再说...

首先,什么叫自主可控,最直观的理解就是当别人“卡脖子”的时候不会被卡住。   集成电路产业通常被分为芯片设计、芯片制造、封装测试三大领域,参看下图:  
   
  我们逐一进行分析, 芯片设计 主要从EDA、IP、设计三个方面来分析;芯片制造主要从设备、工艺和材料三个方面来分析;封装测试则从封装设计、产品封装和芯片测试几方面来分析。



    01   

芯 片 设 计


如何开始一款芯片设计呢?
  首先要有工具(EDA),然后借助现有的资源(IP),加上自己的构思和规划就可以开始芯片设计了。   这里,我们就从芯片设计工具EDA,知识产权IP,以及集成电路的设计流程来分析芯片设计。  
           

1.1 EDA


 

EDA(Electronic Design Automation)电子设计自动化,常指代用于电子设计的软件。

曾经有人跟我说:“EDA有啥呀,不就是个工具嘛?”是啊,确实就是个工具,可是没这个工具,你啥也设计不了啊!

现在的大规模集成电路在芝麻粒大小的1平方毫米内可以集成1亿只以上的晶体管,这些晶体管之间的连接网络更是多达数亿个。当今主流的SoC芯片,其晶体管数量已经超过百亿量级。如果没有精准的,功能强大的EDA工具,怎么设计呢?

EDA是芯片设计的必备工具,目前,Synopsys、Cadence和Mentor(Siemens EDA)占据着超过90%以上的市场份额。在10纳米以下的高端芯片设计上,其占有率甚至高达100%。也就是说,现在研发一款10nm以下的芯片,没有以上三家的EDA工具几乎是不可能实现的。

下表所示是目前芯片设计中主流的EDA工具:

芯片设计分为设计、仿真、验证等环节,对应的EDA工具分为设计工具、仿真工具、验证工具等。   设计工具解决的是模型的构建,也就是从0到1(从无到有)的问题,仿真和验证工具解决模型的确认,也就是1是1还是0.9或者1.1的问题。因此,从EDA开发的角度,设计工具的开发难度更大。   此外,设计规模越大,工艺节点要求越高,EDA工具的开发难度也越大。   国产EDA工具目前在一些仿真验证点工具上取得一些成绩,在模拟电路设计方面也初步具备了全流程工具,但在大规模集成电路设计上和三大厂商还有很大的差距,尤其在高端数字芯片设计流程上基本还是空白。  
           

1.2 IP


  IP(Intelligent Property)代表着知识产权的意思,在业界是指一种事先定义、经过验证的、可以重复使用,能完成特定功能的模块,IP是构成大规模集成电路的基础单元,SoC甚至可以说是基于IP核的复用技术。   IP一般分为硬核、软核和固核。   IP硬核一般已经映射到特定工艺,经过芯片制造验证,具有面积和性能可预测的特点,但灵活性较小;   IP软核以HDL形式提交,灵活性强,但性能方面具有不可预测性;   IP固核通过布局布线或利用通用工艺库,对性能和面积进行了优化,比硬核灵活,比软核在性能和面积上更可预测,是硬核和软核的折中。
 

下表为目前全球前10大IP提供商,可以看到中国有两家入围前十,但是两家市场份额加起来也仅有3%,而ARM一家就占据了40%以上的市场份额,美国的企业则占据了30%的市场份额,如果ARM被英伟达收购,基本上IP市场就是美国的天下了。此外我们也发现,全球[敏感词]的两家EDA公司Synopsys和Cadence,在IP领域也同样占据的第二、第三的位置。

下图所示为IP的种类,其中处理器占51%,接口IP占22.1%,数字类占8.1%,其他占18.8%,处理器类ARM一家独大,在接口类IP中,Synopsys是业界领导者。

我们需要考虑的是,在设计的芯片中那些IP是自主设计的,那些是外购的,这些外购的IP是否存在不可控因素?如果你设计的SoC仅仅是把别人的IP打包整合,那自主可控性就要大打折扣了。

下面,我们以华为麒麟980为例,了解一下芯片研发中的IP使用情况。

麒麟980芯片集成的主要部件有CPU、GPU(俗称显卡)、ISP(处理拍照数据)、NPU(人工智能引擎)和基带(负责通信)。

根据华为官方资料,ISP是华为自研,NPU是华为和寒武纪合作的成果,至于CPU(Cortex-A76)和GPU(Mali-G76)则是华为向ARM公司购买的授权,包括指令集授权和内核授权。

如果没有IP授权,还有没有可能自研麒麟980芯片,目前看来,没有 。


           

1.3 设计流程


芯片设计流程通常可分为:数字IC设计流程和模拟IC设计流程。

数字IC设计流程:芯片定义 → 逻辑设计 → 逻辑综合 → 物理设计 → 物理验证 → 版图交付。

芯片定义(Specification)是指根据需求制定芯片的功能和性能指标,完成设计规格文档。

逻辑设计(Logic Design)是指基于硬件描述语言在RTL(Register-Transfer Level)级实现逻辑设计,并通过逻辑验证或者形式验证等验证功能正确。

逻辑综合(Logic Synthesis)是指将RTL转换成特定目标的门级网表,并优化网表延时、面积和功耗。

物理设计(Physical Design)是指将门级网表根据约束布局、布线并最终生成版图的过程,其中又包含:数据导入 → 布局规划 → 单元布局 → 时钟树综合 → 布线

  • 数据导入是指导入综合后的网表和时序约束的脚本文件,以及代工厂提供的库文件。

  • 布局规划是指在芯片上规划输入/输出单元,宏单元及其他主要模块位置的过程。

  • 单元布局是根据网表和时序约束自动放置标准单元的过程。

  • 时钟树综合是指[敏感词]时钟缓冲器,生成时钟网络,最小化时钟延迟和偏差的过程。

  • 布线是指在满足布线层数限制,线宽、线间距等约束条件下,根据电路关系自动连接各个单元的过程。

物理验证(Physical Verificaiton)通常包括版图设计规则检查(DRC),版图原理图一致性检查(LVS)和电气规则检查(ERC)等。

版图交付(Tape Out)是在所有检查和验证都正确无误的前提下,传递版图文件给代工厂生成掩膜图形,并生产芯片。

模拟IC设计流程:芯片定义 → 电路设计 → 版图设计 → 版图验证 → 版图交付。

其中芯片定义和版图交付和数字电路相同,模拟IC在电路设计、版图设计、版图验证和数字电路有所不同。

模拟电路设计是指根据系统需求,设计晶体管级的模拟电路结构,并采用SPICE等仿真工具验证电路的功能和性能。

模拟版图设计是按照设计规则,绘制电路图对应的版图几何图形,并仿真版图的功能和性能。

模拟版图验证是验证版图的工艺规则、电气规则以及版图电路图一致性检查等。

这里,我们做一个简单的总结:

芯片设计:就是在EDA工具的支持下,通过购买IP授权+自主研发(合作开发)的IP,并遵循严格的集成电路设计仿真验证流程,完成芯片设计的整个过程。在这个过程中,EDA、IP、严格的设计流程三者缺一不可。

目前看来,在这三要素中最先可能实现自主可控的就是设计流程了。

下表列出了当前世界前10的芯片设计公司,供大家参考。


 
 

    02   

芯 片 制 造


芯片制造目前是集成电路产业门槛[敏感词]的行业,怎么看待门槛的高低呢,投资越高、玩家越少就表明门槛越高,目前在高端芯片的制造上也仅剩下台积电(TSMC)、三星(SAMSUNG)和英特尔(Intel)三家了。   下面,我们分别从设备、工艺和材料三个方面来分析芯片制造,寻找我们和先进制造技术的差距。  
           

2.1 设备


芯片制造需要经过两千多道工艺制程才能完成,每个步骤都要依赖特定设备才能实现。

芯片制造中,有三大关键工序:光刻、刻蚀、沉积。三大工序在生产过程中不断重复循环,最终制造出合格的芯片。

三大关键工序要用到三种关键设备,分别是光刻机、刻蚀机、薄膜沉积设备。三大设备占所有设备投入的22%、22%、20%左右,是三种占比[敏感词]的半导体设备。

下面就以最为典型的光刻机和刻蚀机为例进行介绍并分析自主可控。
  • 光刻机

光刻机的原理其实像幻灯机一样,就是把光通过带电路图的掩膜(也叫光罩)Mask投影到涂有光刻胶的晶圆上。60年代末,日本尼康和佳能开始进入这个领域,当时的光刻机并不比照相机复杂多少。

为了实现摩尔定律,光刻技术需要每两年把曝光关键尺寸(CD)降低30%-50%。需要不断降低光刻机的波长λ。然而,波长被卡在193nm无法进步长达20年。后来通过工程上最简单的方法解决,在晶圆光刻胶上方加1mm厚的水,把193nm的波长折射成134nm,称为浸入式光刻。   浸入式光刻成功翻越了157nm大关,加上后来不断改进的镜头、多光罩、Pitch-split、波段灵敏光刻胶等技术,浸入式193nm光刻机一直可以做到今天的7nm芯片(苹果A12和华为麒麟980)。   EVU光刻机   EUV极紫外光刻(Extreme Ultra-Violet)是一种使用极紫外(EUV)波长的新一代光刻技术,其波长为13.5纳米。由于光刻精度是几纳米,EUV对光的集中度要求极高,相当于拿个手电照到月球光斑不超过一枚硬币。反射的镜子要求长30cm起伏不到0.3nm,相当于北京到上海的铁轨起伏不超过1毫米。一台EUV光刻机重达180吨,超过10万个零件,需要40个集装箱运输,安装调试要超过一年时间。   2000年时,日本尼康还是光刻机领域的老大,到了2009年ASML已经[敏感词],市场占有率近7成。目前,[敏感词]的光刻机也只有ASML一家可以提供了。   国内的情况,上海微电子(SMEE)已经有分辨率为90nm的光刻机,新的光刻机也在研制中。

在集成电路制造中,光刻只是其中的一个环节,另外还有无数先进科技用于前后道工艺中。





免责声明:本文转载自“芯论语”,本文仅代表作者个人观点,不代表萨科微及行业观点,只为转载与分享,支持保护知识产权,转载请注明原出处及作者,如有侵权请联系我们删除。

公司电话:+86-0755-83044319
传真/FAX:+86-0755-83975897
邮箱:1615456225@qq.com
QQ:3518641314 李经理  

QQ:332496225   丘经理

地址:深圳市龙华新区民治大道1079号展滔科技大厦C座809室

服务热线

0755-83044319

霍尔元件咨询

肖特基二极管咨询

TVS/ESD咨询

获取产品资料

客服微信

微信服务号