/ EN
13922884048

技术交流

Technology Exchange
技术交流
首页 -技术交流 -其他 -最强的芯片产业链科普,芯片自主可控深度解析(二)

最强的芯片产业链科普,芯片自主可控深度解析(二)

发布时间:2022-03-18作者来源:萨科微浏览:589

上接最强的芯片产业链科普,芯片自主可控深度解析(一)


  • 刻蚀机

刻蚀是将晶圆表面不必要的材质去除的过程。刻蚀工艺位于光刻之后。

光刻机用光将掩膜上的电路结构复制到硅片上,刻蚀机把复制到硅片上的电路结构进行微雕,雕刻出沟槽和接触点,让线路能够放进去。

按照刻蚀工艺分为干法刻蚀以及湿法刻蚀,干法刻蚀主要利用反应气体与等离子体进行刻蚀,湿法刻蚀工艺主要是将刻蚀材料浸泡在腐蚀液内进行刻蚀。

干法刻蚀在半导体刻蚀中占据主流,市场占比达到95%,其[敏感词]优势在于能够实现各向异性刻蚀,即刻蚀时可控制仅垂直方向的材料被刻蚀,而不影响横向材料,从而保证细小图形保真性。湿法刻蚀由于刻蚀方向的不可控性,在先进制程很容易降低线宽,甚至破坏线路本身,导致芯片品质变差。

目前普遍采用多重模板工艺原理,即通过多次沉积、刻蚀工艺实现需要的特征尺寸,例如14nm制程所需使用的刻蚀步骤达到64次,较 28nm提升60%;7nm制程所需刻蚀步骤更是高达140次,较14nm提升118%。

下图所示为多次刻蚀原理。

和光刻机一样,刻蚀机的厂商也相对较少,代表企业主要是美国的 Lam Research(泛林半导体)、AMAT(应用材料)、日本的TEL(东京电子)等企业。这三家企业占据全球半导体刻蚀机的94%的市场份额,而其他参与者合计仅占6%。其中,Lam Research 占比高达55%,为行业龙头,东京电子与应用材料分别占比20%和19%。

国内的情况,目前刻蚀设备代表公司为中微公司、北方华创等。中微公司较为领先,工艺节点已经达到5nm。在全球前十大晶圆企业中,中微公司已经进入其中六家,作为台积电的合作伙伴协同验证14nm/7nm/5nm等先进工艺。

基于此,如果目前在光刻机领域我们还无力做出改变,那么已经有一定优势的刻蚀机势必会成为国产替代的先锋。


           

2.2 工艺制程


芯片制造过程需要两千多道工艺制程,下面,我们按照8大步骤对芯片制造工艺进行简单介绍。

1. 光刻光学显影

光刻是经过曝光和显影程序,把光罩上的图形转换到光刻胶下面的晶圆上。光刻主要包含感光胶涂布、烘烤、光罩对准、 曝光和显影等程序。曝光方式包括:紫外线、极紫外光、X射线、电子束等。

2. 刻蚀(蚀刻)

刻蚀是将材料使用化学反应或物理撞击作用而移除的技术。干刻蚀(dry etching)利用等离子体撞击晶片表面所产生的物理作用,或等离子体与晶片表面原子间的化学反应,或者两者的复合作用。湿刻蚀(wet etching)使用的是化学溶液,经过化学反应达到刻蚀的目的。

3. 化学气相沉积(CVD)

CVD利用热能、放电或紫外光照射等化学反应的方式,将反应物在晶圆表面沉积形成稳定固态薄膜(film)的一种沉积技术。CVD技术在芯片制程中运用极为广泛,如介电材料(dielectrics)、导体或半导体等材料都能用CVD技术完成。

4. 物理气相沉积(PVD)

PVD是物理制程而非化学制程,一般使用氩等气体,在真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质如雪片般沉积在晶圆表面。

5. 离子植入(Ion Implant)

离子植入可将掺杂物以离子型态植入半导体组件的特定区域上,以获得[敏感词]的电特性。离子先被加速至足够能量与速度,以穿透(植入)薄膜,到达预定的植入深度。离子植入可对植入区内的掺质浓度加以精密控制。

6. 化学机械研磨(CMP)

化学机械研磨技术具有研磨性物质的机械式研磨与酸碱溶液的化学式研磨两种作用,可以使晶圆表面达到全面性的平坦化,以利后续薄膜沉积。

7. 清洗

清洗的目的是去除金属杂质、有机物污染、微尘与自然氧化物;降低表面粗糙度;几乎所有制程前后都需要清洗。

8. 晶片切割(Die Saw)

晶片切割是将加工完成的晶圆上一颗颗晶粒裸芯片(die)切割分离,便于后续封装测试。



  虽然不同的Foundry厂的流程大致相同,但不同的工艺控制能力造就了各厂家在先进制程上的区别,随着制程进入5nm,能够量产的芯片制造商就屈指可数了,目前能够量产5nm芯片的只有TSMC和SAMSUNG。   两千多道工艺制程中隐藏着Foundry的无穷的智慧和雄厚的财力,并不是说有了先进的设备,就能造出合格的芯片。   虽然先进制程是技术发展的方向,我们也不能忽视成熟制程。成熟制程依然有很大市场份额。下图是按成熟制程(节点≥40nm)产能排序的全球晶圆代工厂商Top榜单。



可以看出,成熟制程产能排名前四的厂商分别为:台积电(市占率28%),联电(13%),中芯国际(11%),三星(10%)。成熟制程在2020年非常火爆,产能严重短缺,这给各大晶圆代工厂带来了巨大的商机。而从2021年的产业发展形势来看,这种短缺状况在近期内还难以缓解。



2.3 材料


  生产集成电路的材料有成千上万种,我们就以最为典型的硅晶圆光刻胶进行分析。
  • 硅晶圆
硅晶圆是集成电路行业的粮食,是最主要最基础的集成电路材料,90%以上的芯片在硅晶圆上制造,目前300mm硅晶圆是芯片制造的主流材料,使用比例超过70%。曾经,我国300mm半导体硅片100%依赖进口,是我国集成电路产业链建设与发展的主要瓶颈。   全球主要的半导体硅晶圆供应商包括日本信越化学(Shin-Estu)、日本盛高(SUMCO)、德国Siltronic、韩国SK Siltron以及中国台湾的环球晶圆、合晶科技等公司。五大晶圆供货商的全球市占率达到了92%,其中日本信越化学占27%,日本盛高占26%,台湾环球晶圆占17%,德国Silitronic占13%,韩国SK Siltron占9%。   下表列出了全球10大硅晶圆提供商,供参考。
 

国内的情况,中国大陆半导体硅晶圆销售额年均复合增长率达到41.17%,远高于同期全球半导体硅片市场的25.75%。但这块市场并没有掌握在本土厂商手中,在打造国产化产业链的今天,还有很大的空间供国内晶圆制造商去发展。
  • 光刻胶
光刻胶是光刻过程最重要的耗材,光刻胶的质量对光刻工艺有着重要影响。光刻胶可分为半导体光刻胶、面板光刻胶和PCB光刻胶。其中,半导体光刻胶的技术壁垒[敏感词]。   目前全球光刻胶主要企业有日本合成橡胶(JSR)、东京应化(TOK)、信越化学(ShinEtsu)、富士电子(FUJI)、美国罗门哈斯(Rohm&Hass)等,市场集中度非常高,所占市场份额超过85%。   下图显示的是光刻胶企业的市场占有率。     高分辨率的半导体光刻胶是半导体化学品中技术壁垒[敏感词]的材料,日美企业技术领先国内企业二十年至三十年。   从光刻胶技术水平来看,国内企业在缺乏经验、缺乏专业技术人才、缺失关键上游原材料和设备的条件下,探索出一条自主研发之路,光刻胶高端技术短期内尚难突破,还要很长的路要走。在PCB领域,国产光刻胶具备了一定的量产能力,已经实现对主流厂商供货。


    03   

封 装 测 试


封装测试是集成电路三大产业中的最后一个环节。 一般认为封装测试的技术含量和实现难度比前两者低,但是随着SiP及先进封装技术的出现和迅速发展,需要重新定义芯片的封装和测试。   SiP及先进封装在封装原来的三个特点:芯片保护、尺度放大、电气连接的基础上,增加了三个新特点:提升功能密度、缩短互联长度、进行系统重构,因此其复杂程度和实现难度与传统的封装相比有很大程度的提升。   同时,SiP及先进封装也给封装测试提出了新的机遇和挑战。  
           

3.1 芯片封装



我们从封装设计和产品封装两方面来分析芯片封装。


1)封装设计  

早先的封装中没有集成(Integration)的概念,封装设计是比较简单的,对工具要求也很低,Auto CAD就是常用的封装设计工具,随着MCM、SiP技术的出现,封装设计变得越来越复杂,加上目前SiP、先进封装、Chiplet、异构集成概念的市场接受度越来越高,封装内集成的复杂度和灵活度急剧上升,对封装设计的要求也越来越高,

SiP和先进封装设计工具目前只有Cadence和 Siemens EDA(Mentor)两家,Cadence是老牌的封装设计EDA提供商,市场占有率高,用户的忠诚度也比较高。

Siemens EDA(Mentor)是封装设计领域的后起之秀,但其技术先进性上则体现了“后浪”的特点。业界大佬TSMC, Intel, SAMSUNG纷纷选择Siemens EDA作为其先进封装(HDAP)的[敏感词]工具,主要在于两点:先进的设计工具和强悍的验证工具。

首先我们说说设计工具,在一次技术论坛中,我说:“不同于传统封装设计,先进封装和SiP设计对3D环境要求很高,3D设计环境不在于是否看上去很直观、绚丽,而在于对客观元素的精准描述,包括键合线、腔体、芯片堆叠、硅转接板、2.5D集成、3D集成,Bump...”

在这一点上,Siemens EDA的SiP及先进封装设计工具已经远远将其竞争对手抛在身后。下图为先进封装版图设计工具XPD中的封装设计3D截图,4组芯片堆叠中,每组5颗芯片(4HBM+1Logic)以3D TSV连接在一起,和GPU一起集成在硅转接板(2.5D TSV)上,硅转接板和电阻、电容等一起集成在封装基板上。

XPD中的先进封装设计截图(3D)

该设计中包含了3D集成、2.5D集成、倒装焊、Bump、多基板集成等多种方式,在XPD设计环境中得到了精准的实现。   先进封装验证工具包括电气验证和物理验证,电气验证包含80多条规则,对整个系统进行信号完整性、电源完整性、EMI\EMC等电气相关的检查和验证,物理验证则是基于IC验证工具Calibre,整合出Calibre 3D STACK,专门用于3D先进封装的物理验证。   随着封装内的集成度、设计复杂度越来越高,对工具的要求也越来越高,另外,在先进封装领域,封装设计和芯片设计的协同度日益提高,在某种程度上有逐渐融合的趋势,因此对协同设计的要求也日益提升。   关于SiP、微系统、先进封装的详细设计方法和实际案例,可参考电子工业出版社近期即将出版的新书: 《基于SiP技术的微系统》  
  2)产品封装   根据材料和工艺不同,封装可以分为塑料封装、陶瓷封装和金属封装三种类型。   塑封主要基于有机基板,多应用于商业级产品,体积小、重量轻、价格便宜,具有大批量、低成本优势,但在芯片散热、稳定性、气密性方面相对较差。   陶瓷封装和金属封装则主要基于陶瓷基板,陶瓷封装一般采用HTCC基板,金属封装则多采用LTCC基板,对于大功耗产品,散热要求高,可选用氮化铝基板。   陶瓷封装特点包括:密封性好,散热性能良好,对极限温度的抵抗性好,容易拆解,便于问题分析;和金属封装相比体积相对小,适合大规模复杂芯片,适合航空航天等对气密性有要求的严苛环境应用;但价格昂贵,生产周期长,重量和体积都比同类塑封产品大。   金属封装特点包括:密封性好,散热性能良好,容易拆解,灵活性高;但体积相对较大,引脚数量较少,不适合复杂芯片,价格贵,生产周期长,需要组装金属外壳和基板,工序复杂,多应用于MCM设计,航空航天领域应用较为普遍。   陶瓷封装和金属封装内部均为空腔结构,具有可拆解的优势,便于故障查找和问题“归零”, 因此受到航空航天等领域用户的欢迎。




3.2 芯片测试



芯片测试的项目非常多,这里我们重点了解一下机台测试系统测试
 
  • 机台测试

一般是指采用ATE(Automatic Test Equipment)自动测试设备来进行芯片测试,测试芯片的基本功能和相应的电参数。 机台可以提供待测器件DUT(Device Under Test)所需的电源、不同周期和时序的波形、驱动电平等。   测试向量(Test Vector)是每个时钟周期应用于器件管脚的用于测试的逻辑1和逻辑0数据,是由带定时特性和电平特性的波形代表,与波形形状、脉冲宽度、脉冲边缘或斜率以及上升沿和下降沿的位置都有关系。

测试向量可基于EDA工具的仿真向量(包含输入信号和期望的输出),经过优化和转换,形成ATE格式的测试向量。利用EDA工具建立器件模型,通过建立一个Testbench仿真验证平台,对其提供测试激励,进行仿真,验证结果,将输入激励和输出响应存储,按照ATE向量格式,生成ATE向量文件。

  • 系统测试

系统测试也称为板级系统测试,是指模拟芯片真实的工作环境,对芯片进行各种操作,确认其功能和性能是否正常。   除了机台测试和系统测试之外,还需要对芯片进行了一系列的试验和考核,内容包括:热冲击、温度循环、机械冲击、扫频震动、恒定加速度、键合强度、芯片剪切强度、稳态寿命、密封、内部水汽含量、耐湿气等试验。   只有所有的测试都顺利通过了,一颗芯片才能算成功,作为合格的产品应用到下一个环节。
 


自主可控总结


最后,结合下面表格,我们对自主可控作一个简单总结。

从表格可以看出,我们在IC设计流程、封装(SiP)设计,以及在产品封装、芯片测试环节的自主可控程度比较高;在刻蚀机、芯片工艺制程上有一定的自主可控性,而在EDA,IP,光刻机,硅晶元,光刻胶等环节自主可控的程度非常低,所以高端芯片很容易被“卡脖子”,因为高端芯片所用到的EDA,IP,光刻机,硅晶元,光刻胶几乎全部依赖进口。   自主可控相对较高的IC设计流程、封装(SiP)设计也几乎全部依赖进口的EDA工具,在产品封装和芯片测试环节,封装设备和测试设备大约80%以上是进口设备;工艺制程上高端芯片同样也无法自主生产。考虑到这些,不由得让我们无法盲目乐观,因为越往源头挖掘,自主可控的比例就越低。   当别人不卡脖子的时候,不要趾高气扬,似乎一切尽在掌控;当别人卡脖子的时候,不要突然发现,竟然全身上下都是脖子!
  看完此文,如果以后有人告诉你,他做的芯片实现了100%的自主可控,我们就可以从上面的环节逐个去分析,一颗芯片从最初的构思到最终的产品,所经历的过程中,那些环节真正是自主可控的?哪些环节依然是要被卡脖子的?
 

只有真正认识到自身的不足,实事求是,踏踏实实,一步一个脚印,并持之以恒,才能在激烈的竞争中不致落后,从而减少卡脖子事件的发生!



免责声明:本文转载自“芯论语”,本文仅代表作者个人观点,不代表萨科微及行业观点,只为转载与分享,支持保护知识产权,转载请注明原出处及作者,如有侵权请联系我们删除。

公司电话:+86-0755-83044319
传真/FAX:+86-0755-83975897
邮箱:1615456225@qq.com
QQ:3518641314 李经理  

QQ:332496225   丘经理

地址:深圳市龙华新区民治大道1079号展滔科技大厦C座809室

服务热线

0755-83044319

霍尔元件咨询

肖特基二极管咨询

TVS/ESD咨询

获取产品资料

客服微信

微信服务号